

Time of Flight System for the MICE Experiment

Steve Kahn and Kevin Lee For the Padova-Milano Group A. Guglielmi et al.

Legal Statement

- Most of this material has been plagiarized from
 - "TOF in Mice" by A. Guglielmi at 13 Jun 2002 detector meeting.
 - TOF section in detector chapter by Maurizio, Mauro, Alberto.

10% cooling of 200 MeV muons requires ~ 20 MV of RF

single particle measurements =>

measurement precision can be as good as Δ ($\epsilon_{out}/\epsilon_{in}$) =

LOI submitted to PSI and RAL.

The two labs agreed to collaborate and RAL encourages submission of proposal. 2002: prepare prop

TOF I Station

- TOF I is located after 1st diffuser where beam comes into hall.
 - This at −15 meters from center of cooling cells.
 - TOF I is 12×12 cm² in size.
 - TOF I is composed of two planes oriented in X and Y respectively
 - Each plane is segmented into two slabs with phototubes on each end.
 - Each slab is $12\times6\times2.5$ cm³.
 - Using Bicron BC-420 fast Scintillator.
 - Use Hamamatsu R4998 Phototubes on each end.
 - 0.7 ns rise time, 160 ps transit time jitter

TOF II AND TOF III Stations

- TOF II (TOF III) is located before (after) the upstream (downstream) measurement solenoid.
 - This is at -5.544 meters from the center of the cooling cells.
 - TOF II, III are 40×40 cm² in size.
 - TOF II, III are composed of a single Y oriented plane.
 - The plane is segmented into 8 slabs.
 - Each slab is $40\times6\times2.5$ cm³.
 - There is ~1 cm overlap at the edges of the slabs to allow cross-calibration.
 - Bicron BC-404 Scintillator is used for these stations since it has a longer attenuation length than the BC-420 used in station I.
 - $\lambda = 1.7$ meters.

TOF II and III continued

- The choice of phototube to use for the TOF II and TOF III stations is complicated by the presence of fringing magnetic field from the measurement solenoids.
 - The field situation is shown in the following transparencies.
 - The fast phototube used for TOF I (R4998) does not tolerate much magnetic field. The choices are
 - Shield the fast Hamamatsu R4998 phototubes.
 - Use the Hamamatsu R5505 fine mesh phototube which can handle fields up to ~1 Tesla.

Magnetic Fields in the Vicinity of TOF II

- Figure shows |B| from the cooling and measurement solenoids.
 - The parameters used in the calculation come from Rochford et al. (Mice note 10)
 - $R_{coil} = 25 \text{ cm } !!$
 - The original sketches show R_{coil}=15 cm.
- The phototubes are placed in a place with high field.
 - This will be a design issue.

More on TOF II and TOF III Fields

- Figures show $B_z(r)$ and $B_r(r)$ at the TOF II position.
- The phototubes appear to be position at $r\approx 23-25$ cm. (?)
 - B_z≈5 T
 - $B_r \approx 0.4$ T (this component along is along the phototube axis.
- Light guides could be used to put phototubes outside the coils (hopefully).
 - Just outside the coils:
 - $B_7 = 2 \text{ T}$
 - B_r≈0.3 T
 - These are my estimates, not Milano-Padova.

Even More on TOF Fields

- The figures on the right show B_z (upper) and B_r (lower) at r=25 cm as a function of z. This is appoximately the radial position that the phototubes would be placed.
 - Could we imagine positioning the TOFs ~2.5 meters from the end of the measurement solenoids where the fields will have dropped off?
 - This would add ~5 meters to the length. Can we still do that?

Phototube Properties

- The table shows a summary of the phototube properties
- The Hamamatsu R4998 is the faster tube and could be used for TOF I.
- The approach for TOF II, III could be either:
 - Multiple mu-metal shielding for a reduction by 10⁶.
 - The use of the slower Hamamatsu R 5505 tube
 - How much would this compromise the triggering performance?

	R 4998	R 5505	
Structure	Linear Focused	Fine Mesh	
Stages	10	15	
Gain	5.7×10^{6}	$5 \times 10^5 \text{ B} = 0$	
		$1.8 \times 10^4 \text{ B}=1 \text{ T}$	
Rise Time	0.7 ns	1.5 ns	
Transit Time	10 ns	5.6 ns	
Transit Time	0.16 ns	0.35 ns	
Jitter			

Shielding Phototubes

- Fields transverse to cylinder axis can be effectively reduced $S_i^T = \mu \frac{\delta}{2R_i}$
 - Single cylinder:

■ Three concentric cylinders:

$$S^{T} = \sum_{i=1}^{3} S_{i}^{T} + \sum_{i,j=1}^{3} S_{i}^{T} S_{j}^{T} (1 - \frac{R_{i}}{R_{i}})^{2} + S_{3}^{T} \prod_{i=1}^{3} S_{i}^{T} \left(1 - \frac{R_{i}}{R_{i+1}}\right)^{2}$$
Numerical estimates using

- - Mu-metal μ =20000
 - Thickness δ =1 mm
 - Radii $R_1=1.5$, $R_2=1.75$, $R_3=2$ cm
 - Shielding factor of S_T≈10⁷
 - Caution mu-metal may not survive very high fields.
- This does not effectively work for longitudinal fields.
 - B_1 falls off as $e^{-1/D}$ which gives $S_1 \sim 2-3$.

TOF Signal Processing

- From the HARP experience the signal processing issues are likely to be
 - Electronic Cross Talk in the discriminators and TDCs.
 - Time Stability of temperature, etc.
- HARP experiences implies that 150 ps intrinsic resolution can be achieved. This will require
 - High quality signal cables
 - High quality active splitters for PMT signal to TDC, ADC
 - Leading edge discriminators modified for cross talk
 - High quality delay cables
 - High quality signal regenerators to TDC inputs
 - State of the art TDCs
- Much of this will be available from HARP

Time of Flight System Costs

System	Item	New Costs (K€)	From Harp (K€)
Detector	40 PMT+μ metal	100	
	Scintillator	8	
	Light Guides	7	
	Mechanics		
Calibration System	Laser		80
	Optical System	15	
	Cosmic Ray Setup	5	
Electronics	QDC	10	
	TDC		10
	Scalers, MT, NIM		10
	Delay Boxes		5
	Active Splitters		5
	Crates, HV system	10	
	Discriminators	20	
	HV and Signal Cables		10
Total		180	120

What Needs to be Studied

- Understand what the field environment will be at the position of the PMTs.
- Photomultiplier Tube performance in our magnetic field environment.
- PMT coupling to directly to scintillator for TOF I
- Light guide shape and length for TOF II, III to live with field.
- Can we used the faster PMTs with shielding.
- Triggering for the MICE experiment.